High School Geometry – Unit 1

Develop the ideas of congruence through constructions and transformations

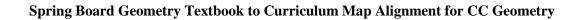
Critical Area: In this Unit the notion of two-dimensional shapes as part of a generic plane (the Euclidean Plane) and exploration of transformations of this plane as a way to determine whether two shapes are congruent or similar are formalized. Students use transformations to prove geometric theorems. The definition of congruence in terms of rigid motions provides a broad understanding of this notion, and students explore the consequences of this definition in terms of congruence criteria and proofs of geometric theorems. Students develop the ideas of congruence and similarity through transformations.

CLUSTERS	COMMON CORE STATE	Spring Board Geometry	Resources
Make geometric construction Make a variety of formal geometric constructions using a variety of tools.	Geometry - Congruence G.CO.12 Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software etc. Copying a segment, copying an angle; bisecting a segment; bisecting an angle; constructing perpendicular lines including the perpendicular bisector of a line segment; and constructing a line parallel to a give line through a point not on the line. G.CO.13 Construct an equilateral triangle, a square, a regular hexagon inscribed in a circle.	4-1: Segments and Midpoints 4-2: Angles and Angle Bisectors 6-1:Justifying Statements 6-2: Two-Column Geometric Proofs 11-1: Congruent Triangle 11-2: Congruence Criteria	Materials: For Students: compass, protractor, straight-edge, string, reflective devices, tracing paper, graph paper and geometric software. For instruction: Document camera, LCD projector, screen Tulare County Office of Education Hands-On Strategies for Transformational Geometry Websites: Math Open Reference http://mathopenref.com/tocs/constructionstoc.html (online resource that illustrates how to generate constructions) Math is Fun http://www.mathsisfun.com/geometry/constructions.html H-G.CO.12, 13 Engage New York Geometry-Module 1 pg 7 – 37 Illustrative Mathematics

CLUSTERS	COMMON CORE STATE STANDARDS	Spring Board Geometry	Resources
			Make Formal Constructions More Constructions
Experiment with transformations in the plan Develop precise definitions of geometric figures based on the undefined notions of point, line, distance along a line and distance around a circular arc. Experiment with transformations in the plane.	Geometry - Congruence G.CO.1 Know precise definitions of angle, circle, perpendicular lines, parallel lines, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc. G.CO.2 Represent transformations in the plane using e.g. transparencies and geometry software; describe transformations as functions that take points in the plane as inputs and give other points as outputs. Compare transformations that preserve distance and angle to those that do not (e.g. translation versus horizontal stretch.) G.CO.3 Given a rectangle, parallelogram, trapezoid, or regular polygon, describe the rotations and reflections that carry it onto itself. G.CO.4 Develop definitions of rotations, reflections, and translations in terms of angles, circles perpendicular lines, parallel lines, and line segments. G.CO.5 Given a geometric figure and a rotation, reflection or translation, draw the transformed figure using e.g. graph paper, tracing paper, or geometry software. Specify a	1-1: Basic Geometric Figures 1-2: More Geometric Figures 3-1: Geometric Definitions and Two-Column Proofs 3-2: Conditional Statements 3-3: Converse, Inverses, and Contrapositive 4-1: Segments and Midpoints 4-2: Angles and Angle Bisectors 24-1: Circle Basics 24-2:Theorems About Chords 24-3:Tangent Segments 9-1: Transformations 9-2: Translations 9-3: Reflection 9-4: Rotations 10-1: Compositions of Transformations 10-2: Congruence 29-1:Constructions with Segments and Angles 29-2:Constructions with Parallel and Perpendicular Lines 29-3: Constructions with Circles	Interactive http://www.shodor.org/interactivate/act ivities/Transmographer/ Illustrative Mathematics Fixed Points of rigid Motion Dilations and Distances Horizontal Stretch of Plane Mars Tasks: Aaron's Designs Possible Triangle Constructions Transforming 2D Figures Mathematics Vision Project: Module 6: Congruence, Constructions and Proof Module 5: Geometric Figures Illuminations Security Camera Placement Placing a Fire Hydrant Pizza Delivery Regions Perplexing Parallelograms California Mathematics Project Transformational Geometry Teaching Channel Collaborative Work with
	sequence of transformations that will carry a given figure onto another.		Transformations

CLUSTERS	COMMON CORE STATE STANDARDS	Spring Board Geometry	Resources
		12-1: Flowchart Proofs 12-2: Three Types of Proofs	
Understand congruence in terms of rigid motions	Geometry - Congruence G.CO.6 Use geometric descriptions of	Reflect on Background Knowledge 5.1 Angles of Triangles	Illustrative Mathematics Understand Congruence in terms of Rigid Motion
Use rigid motion to map corresponding parts of congruent triangle onto each other.	rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure; given two figures, use the definition of		Is this a rectangle? Illuminations
Explain triangle congruence in terms of rigid motions.	congruence in terms of rigid motions to decide if they are congruent.		Triangle Classification
	G.CO.7 Use definition of congruence in terms of rigid motions to show that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent.	11-1: Congruent Triangles 11-2: Congruence Criteria 11-3: Proving and Applying the Congruence Criteria 11-4: Extending the Congruence Criteria	Teaching Channel Formative Assessment: Understanding Congruence
	G.CO.8 Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow the definition of congruence in terms of rigid motions.		
Prove geometric theorems Prove theorems about lines and angles, triangles; and parallelograms.	Geometry - Congruence G.CO.9 Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a	6-1: Justifying Statements 6-2: Two-Column Geometric Proofs 7-1: Parallel Lines and Angle	Illustrative Mathematics https://www.illustrativemathematics.or g/content-standards/HSG/CO/B
	transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular	Relationships 7-2: Proving Lines are Parallel 7-3: Perpendicular Lines	Mars Task: Evaluating Statements About Length and Area
	bisector of a line segment are exactly those equidistant from the segment's endpoints.		Illuminations: Perplexing Parallelograms

LAUSD Secondary Mathematics


CLUSTERS	COMMON CORE STATE STANDARDS	Spring Board Geometry	Resources
	G.CO.10 Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.	13-1: Angle Relationships in Triangles 13-2: Isosceles Triangles 14-1: Altitudes of a Triangle 14-2: Medians of a Triangle 14-3: Perpendicular Bisectors and Angle Bisectors of a Triangle	
	G.CO.11 Prove theorems about parallelograms. Theorems include: opposite sides are congruent, opposite angles are congruent; the diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals.	15-1: Kites and Triangle Midsegments 15-2: Trapezoids 15-3: Parallelograms 15-4: Rectangles, Rhombuses, and Squares	

Geometry – UNIT 2 Similarity, Right Triangles, and Trigonometry

Critical Area: Students investigate triangles and decide when they are similar. A more precise mathematical definition of similarity is given; the new definition taken for two objects being similar is that there is a sequence of similarity transformations that maps one exactly onto the other. Students explore the consequences of two triangles being similar: that they have congruent angles and that their side lengths are in the same proportion. Students prove the Pythagorean Theorem using triangle similarity.

CLUSTERS	COMMON CORE STATE	Spring Board Geometry	Resources
	STANDARDS		
	Geometry - Similarity, Right		Mars Tasks :
	Triangles, and Trigonometry		Hopwell Geometry – G.SRT.5
Understand similarity in terms of	G-SRT.1 . Verify experimentally the	17-1: Dilations	Inscribing and Circumscribing Right
similarity transformations	properties of dilations given by a	17-2: Similarity Transformations	Triangles – G.SRT:
	center and a scale factor:	17-3: Properties of Similar Figures	Analyzing Congruence Proofs
	a. A dilation takes a line not passing		Analyzing congractice rivors
	through the center of the dilation to a		CPALMS
	parallel line, and leaves a line passing		
	through the center unchanged.		<u>Dilation Transformation</u>
	b. The dilation of a line segment is		
	longer or shorter in the ratio given by the scale factor.		Illustrative Mathematics
	G-SRT.2. Given two figures, use the		Similar Triangles : G-SRT.3
	definition of similarity in terms of		Pythagorean Theorem: G-SRT.4
	similarity transformations to decide if		Joining two midpoints of sides of a
	they are similar; explain using		triangle : G-SRT.4
	similarity transformations the meaning		
	of similarity for triangles as the		Teaching Channel:
	equality of all corresponding pairs of		Challeging Students to Discover
	angles and the proportionality of all		<u>Pythagoras</u>
	corresponding pairs of sides.		How tall is the Flagpole
	G-SRT.3 . Use the properties of	18-1: Similarity Criteria	Mathematics Vision Project
	similarity transformations to establish	18-2: Using Similarity Criteria	Module 6: Similarity and Right
	the Angle-Angle (AA) criterion for	18-3: Triangle Proportionality	<u>Triangle Trigonometry</u>
	two triangles to be similar.	Theorem	
	Geometry - Similarity, Right		Khan Academy

Prove theorems involving similarity	Triangles, and Trigonometry		https://www.khanacademy.org/math/g
1 Tove theorems involving similarity	G-SRT.4. Prove theorems about	20-1: Pythagorean Theorem	eometry/right triangles topic/pythago
	triangles. Theorems include: a line	20-2: Converse of the Pythagorean	rean proofs/e/pythagorean-theorem-
	parallel to one side of a triangle	Theorem	proofs
	divides the other two proportionally,	1 neofeni	<u>proofs</u>
	and conversely; the Pythagorean		Math is Fun
	Theorem proved using triangle		http://www.mathsisfun.com/geometry/
Apply geometric concents in	1 0		pythagorean-theorem-proof.html
Apply geometric concepts in	similarity.	15 1. Vites and Twisteds	pythagorean-theorem-proof.html
modeling situations	G-SRT.5 . Use congruence and similarity criteria for triangles to solve	15-1: Kites and Triangle	NCTM Illuminations
		Midsegments	
	problems and to prove relationships in	15-2: Trapezoids	<u>Understanding the Pythagorean</u>
	geometric figures	15-3: Parallelograms	Relationship
		15-4: Rectangles, Rhombuses, and	M TO I
		Squares	Mars Task:
		19-1: The Right Triangle Altitude	Solving Geometry Problems:
		Theorem	Floodlights
		19-2: The Geometric Mean	Proofs of Pythagorean Theorem
		16-1: Proving a Quadrilateral is a	The Pythagorean Theorem: Square
		Parallelogram	Areas
		16-2: Proving a Quadrilateral is a	Finding Shortest Routes: The
		Rectangle	Schoolyard Problem
		16-3: Proving a Quadrilateral is a	
		Rhombus	
		16-4: Proving a Quadrilateral is a	Modeling Task:
		Square	Mars Task:
			Estimating: Counting Trees
	Supporting clusters:		
	G-MG 1-3 : Modeling with Geometry:	Activity 22	Inside Mathematics
	Apply geometric concepts	30-1: Areas of Rectangles and	William's Polygon
	in modeling situations	Parallelograms	
		30-2: Areas of Triangles	
		30-3: Areas of Rhombuses and	
		Trapezoids	
		32-1: Circumference and Area of a	
		Circle	
		32-2: Sectors and Arcs	
		32-3:Circles and Similarity	

High School Geometry – Unit 3 Express Geometric Properties with Equations; Extend Similarity to Circles

Critical Area: Students investigate triangles and decide when they are similar; with this newfound knowledge and their prior understanding of proportional relationships, they define trigonometric ratios and solve problems using right triangles. They investigate circles and prove theorems about them. Connecting to their prior experience with the coordinate plane, they prove geometric theorems using coordinates and describe shapes with equations. Students extend their knowledge of area and volume formulas to those for circles, cylinders and other rounded shapes. They prove theorems, both with and without the use of coordinates.

CLUSTERS COMMON CORE STATE STANDARDS	Spring Board Geometry Resources
Use coordinates to prove simple geometric theorems algebraically Geometry - Expressing Geometry - Expressing Geometry - Expressing Geometric theorems algebraically. For example, prodisprove that a figure defined by given points in the coordinate parectangle; prove or disprove to point (1, √3) lies on the circle centered at the origin and contain the point (0, 2). G.GPE.5. Prove the slope criter parallel and perpendicular lines use them to solve geometric pro(e.g., find the equation of a line parallel or perpendicular to a girline that passes through a given G.GPE.6. Find the point on a dline segment between two given that partitions the segment in a gratio. G.GPE.7. Use coordinates to coperimeters of polygons and area triangles and rectangles, e.g., us distance formula. ★	**Compass, straight-edge, graph paper, reflective surface, protractor, tracing paper, scissors, tape. **Compass, straight-edge, graph paper, reflective surface, protractor, tracing paper, scissors, tape. **Compass, straight-edge, graph paper, reflective surface, protractor, tracing paper, scissors, tape. **Geometer's Sketchpad or other software. **Geogebra Software **Mathematics Vision Project Module 7: Connecting Algebra and Geometry **Mars Task:** Finding Equations of Parallel and Perpendicular Lines **Geometry** **Mars Task:** Finding Equations of Parallel and Perpendicular Lines **Geometry** **Mars Task:** Finding Equations of Parallel and Perpendicular Lines **Geometry** **Mars Task:** Finding Equations of Parallel and Perpendicular Lines

Understand and apply theorems	Geometry - Circles	Illustrative Mathematics
about circles	G.C.1 . Prove that all circles are	Right triangles inscribed in circles II:
	similar.	G.C.2a
	G.C.2. Identify and describe	Inscribing a triangle in a circle :
	relationships among inscribed angles,	G.C.3a
	radii, and chords. Include the	
	relationship between central,	Two Wheels and a Belt : G.C. B
Find arc lengths and areas of sectors	inscribed, and circumscribed angles;	Equal Area Triangles on the Same
of circles	inscribed angles on a diameter are	Base II : G.GPE.5b
	right angles; the radius of a circle is	
	perpendicular to the tangent where the	Mars Tasks:
	radius intersects the circle.	Sectors of Circles
	G.C.3. Construct the inscribed and	
	circumscribed circles of a triangle, and	
	prove properties of angles for a	
	quadrilateral inscribed in a circle.	Inside Mathematics:
		What's My Angle?
	G.C.5. Derive using similarity the fact	
	that the length of the arc intercepted	
	by an angle is proportional to the	
	radius, and define the radian measure	
	of the angle as the constant of	
	proportionality; derive the formula for	
	the area of a sector. Convert between	
	degrees and radians. CA	
Translate between the geometric	Geometry - Expressing Geometric	Illustrative Mathematics
description and the equation for a	Properties with Equations	Explaining the equation for a Circle
conic section	G.GPE.1 . Derive the equation of a	Slopes and Circles
	circle of given center and radius using	Defining Parabolas Geometrically
	the Pythagorean Theorem; complete	
	the square to find the center and radius	Mars Task:
	of a circle given by an equation.	Equations of Circles 1
		Equations of Circles 2
	G.GPE.2 . Derive the equation of a	Equations of Circles 2
	parabola given a focus and directrix.	

High School Geometry – UNIT 4 Trigonometry; Measurement and Dimensions; Statistics and Probability

Critical Area: Students explore probability concepts and use probability in real-world situations. They continue their development of statistics and probability, students investigate probability concepts in precise terms, including the independence of events and conditional probability. They explore right triangle trigonometry, and circles and parabolas. Throughout the course, Mathematical Practice 3, "Construct viable arguments and critique the reasoning of others," plays a predominant role. Students advance their knowledge of right triangle trigonometry by applying trigonometric ratios in non-right triangles.

CLUSTERS	COMMON CORE STATE	Spring Board Geometry	Resources
Define twigenemetwic veties and	STANDARDS Company Similarity Bight		Illustrative Methematics
Define trigonometric ratios and solve problems involving right triangles.	Geometry - Similarity, Right Triangles, and Trigonometry G.SRT.6 Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions of trigonometric ratios for acute angles. G.SRT.7 Explain and use the relationship between the sine and	22-1: Similar Right Triangles 22-2: Trigonometric Ratios 22-3: Using Trigonometric Ratios 22-4: Solving Right Triangles	Illustrative Mathematics Defining Trigonometric Ratios: G.SRT.6 Sine and Cosine of Complementary Angles: G.SRT.7 Shortest line segment from a point P to a line L: G.SRT.8 Mars Task:
	cosine of complementary angles. G.SRT.8 Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems. G.SRT.8.1 Derive and use the trigonometric ratios for special right triangles (30°,60°,90°and	21-1: 45°-45°-90° Triangles 21-2: 30°-60°-90° Triangles	Modeling Rolling Cups Inside Mathematics: Circular Reasoning
Explain volume formulas and use them to solve problems	45°,45°,90°). CA Geometric Measurement and Dimension G.GMD.1 Give an informal argument	35-1:Surface Area of Pyramids and	Illustrative Mathematics Doctor's Appointment: G.GMD.3

Visualize relationships between twodimensional and three-dimensional objects. for the formulas for the circumference of a circle, area of a circle, volume of a cylinder, pyramid, and cone. *Use dissection arguments, Cavalieri's principle, and informal limit arguments.*

G.GMD.3 Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems.

G.GMD.4 Identify the shapes of two-dimensional cross-sections of three-dimensional objects, and identify three-dimensional objects generated by rotations of two-dimensional objects.

G.GMD.5 Know that the effect of a scale factor k greater than zero on length, area, and volume is to multiply each by k, k², and k³, respectively; determine length, area and volume measures using scale factors. CA

G.GMD.6 Verify experimentally that in a triangle, angles opposite longer sides are larger, sides opposite larger angles are longer, and the sum of any two side lengths is greater than the remaining side length; apply these relationships to solve real-world and mathematical problems. CA

Cones

35-2: Volume of Pyramids and Cones

35-3: Density

34-1:Surface Area of Prisms and Cylinders

34-2: Volume of Prisms and Cylinders

36-1:Surface Area of Spheres

36-2: Volume of Spheres

36-3: Spherical Geometry

33-1: Prisms and Pyramids

33-2: Cylinders and Cones

33-3: Spheres and Solids of Rotation

Centerpiece: G.GMD.3

Area of a circle: G.GMD.1

Global Positioning System: G.GMD.4,

A.CED.2

Circumference of a Circle

Volume formulas for Cylinder and

prims

Illuminations

Trigonometry for Solving Problems

Mathematics Vision Project:

Circles a Geometric Perspective

Mars Task:

Evaluating Statements About

Enlargements (2D & 3D)

2D Representations of 3D Objects Calculating Volume of Compound

Objects

Modeling: Making Matchsticks

Estimating and Sampling: Jellybeans

Understand independence and	Statistics and Probability -		Illustrative Mathematics
conditional probability and use	Conditional Probability and the		
them to interpret data (Link to data	Rules of Probability		Statistics and Probability- Conditional
from simulations or experiments.)	S.CP.1 Describe events as subsets of a sample space (the set of	38-1: Probability of a Single Event	Probability and the rules of Probability Rain and Lightning: S.CP.2,3,5, and 7
	outcomes) using characteristics (or categories) of the outcomes,	38-2: Events Involving "And" and "Or"	Lucky Envelopes: S.CP.3 Random Walk: S.CP.9
	or as unions, intersections, or		
	complements of other events ("or," "and," "not").		Mathematics Vision Project:
			Module 9: Probability
	S.CP.2 Understand that two events		
	A and B are independent if the		
	probability of A and B occurring		Mars Task:
	together is the product of their		Wars Task:
	probabilities, and use this		Probability Games
	characterization to determine if		
	they are independent.		Modeling Conditional Probabilities 1:
	G OD AVI I I I I I I I I I I I I I I I I I I		<u>Lucky Dip</u>
	S.CP.3 Understand the conditional		
	probability of A given B as $P(A B) = P(A B)$		
	and $B)/P(B)$, and interpret		Georgia Standards:
	independence of A and B as		
	saying that the conditional probability of <i>A</i> given <i>B</i> is the		<u>Unit 7: Applications on Probability</u>
	same as the probability of A, and		Inside Mathematics:
	the conditional probability of B		marco mantemarios.
	given A is the same as the		Friends You Can Count On
	probability of B .		Got Your Number
	S.CP.4 Construct and interpret twoway frequency tables of data	39-1: Using a Venn Diagram to Represent a Sample Space	

	when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probabilities. For example, collect data from a random sample of students in your school on their favorite subject among math, science, and English. Estimate the probability that a randomly selected student from your school will favor science given that the student is in tenth grade. Do the same for other subjects and compare the results.	39-2: Using Venn Diagrams to Represent "And", "Or", and "Not" 42-1:The Multiplication Rule 42-2: Geometric Probability 42-3: Permutations and Combinations
	S.CP.5 Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations.	
Use the rules of probability to	Statistics and Probability -	
compute probabilities of compound	Conditional Probability and the	
events in a uniform probability	Rules of Probability	
model	S.CP.6 Find the conditional probability of <i>A</i> given <i>B</i> as the	41-1: Understanding Conditional Probability
	fraction of B's outcomes that also belong to A, and interpret	41-2: The Conditional Probability

the answer in terms of the model. S.CP.7 Apply the Addition Rule, $P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B), \text{ and interpret the answer in terms of the model.}$ S.CP.8 (+) Apply the general Multiplication Rule in a uniform probability model, $P(A \text{ and } B) = P(A)P(B A) = P(B)P(A B), \text{ and interpret the answer in terms of the model.}$ S.CP.9 (+) Use permutations and combinations to compute probabilities of compound events and solve problems.	Formula 41-3: Tree Diagrams 40-1: Applying the Addition Rule 40-2: Adapting the Addition Rule for Mutually Exclusive Events	Inside Mathematics: Rod Trains
---	--	---------------------------------